Nakagami-m Fading Detection with Eigen Value Spectrum Algorithms

Author:

Vivekanandam B

Abstract

One of the most crucial roles of the cognitive radio (CR) is detection of spectrum ‘holes’. The ‘no a-priori knowledge required’ prospective of blind detection techniques has attracted the attention of researchers and industries, using simple Eigen values. Over the years, a number of study and research has been carried out to determine the impact of thermal noise in the performance of the detector. However, there has not been much work on the impact of man-made noise, which also hinders the performance of the detector. As a result, both man-made impulse noise and thermal Gaussian noise are examined in this proposed study to determine the performance of blind Eigen value-based spectrum sensing. Many studies have been conducted over long sample length by oversampling or increasing the duration of sensing. As a result, a research progress has been made on shorter sample lengths by using a novel algorithm. The proposed system utilizes three algorithms; they are contra-harmonic-mean minimum Eigen value, contra-harmonic mean Maximum Eigen value and maximum Eigenvalue harmonic mean. For smaller sample lengths, there is a substantial rise in the number of cooperative secondary users, as well as a low signal-to-noise ratio when employing the maximum Eigen value Harmonic mean. The experimental analysis of the proposed work with respect to impulse noise and Gaussian signal using Nakagami-m fading channel is observed and the results identified are tabulated.

Publisher

Inventive Research Organization

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative Spectrum Sensing With Hard Decision Fusion Based on Modified Correlation Detection Scheme in Additive Laplacian Noise;2022 3rd International Conference on Smart Electronics and Communication (ICOSEC);2022-10-20

2. Reduction of Electromagnetic Interference Using EMI Filter in a Buck Converter;Journal of Physics: Conference Series;2022-08-01

3. Design and Numerical Simulation of RF Antenna for Bio-Medical Application;2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2022-05-09

4. Star Shaped Penta-Frequency Microstrip Radiating Element Design for X, C Band and Satellite Communication;2022 6th International Conference on Trends in Electronics and Informatics (ICOEI);2022-04-28

5. Design and Implementation of CPW-Fed Microstrip Patch Antenna, Synthesis and Analysis using MLP and Machine Learning for Wireless Applications;2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3