Skin Cancer Classification using Multiple Convolutional Neural Networks

Author:

Praveen Raj A ,Kanishk V ,Vineesh K ,A Senthilselvi

Abstract

Skin cancer is a significant threat to the global health, with over 2.1 million new cases diagnosed annually worldwide. Timely detection and treatment are vital for improving survival rates, yet the limited availability of dermatologists in remote regions poses a significant barrier. The utilization of Artificial Intelligence (AI) and Deep Learning (DL) has seen a remarkable surge in recent years for skin cancer prediction. This study conducts an in-depth review of advanced skin cancer prediction methods employing deep learning techniques and explores the diverse array of machine learning algorithms applied in this context. Skin cancer comprises seven distinct diagnoses, presenting a formidable challenge for dermatologists due to the overlapping phenotypic traits. Conventional diagnostic accuracy typically ranges from 62% to 80%, underscoring the potential of machine learning to enhance diagnosis and treatment. While some researchers have created binary skin cancer classification models, extending this to multiple classes with superior performance has been elusive. A deep learning classification model for various skin cancer types, yielding promising results that highlight the superiority of deep learning in classification tasks is developed. The experimental outcomes demonstrate that the individual accuracy of Sequential, ResNet50, DenseNet201, VGG-16 and EfficientNetB0 models are aggregated and yields the maximum occurring output value from all the models. Furthermore, a comparative analysis with the latest skin classification models underscores the superior performance of the proposed multi-type skin cancer classification model.

Publisher

Inventive Research Organization

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3