Skin cancer classification dermatologist-level based on deep learning model

Author:

Albawi SaadORCID,Arif Muhanad Hameed,Waleed Jumana

Abstract

Medical image analysis is a significant burden for doctors, therefore, it is used to supplement image processing. Many medical images are assumed to be diagnosed as accurately as healthcare experts when the precision of image detection and recognition in an image processing approach matches that of a human being. Artificial Intelligence (AI) based predictive modelling is an important component of many healthcare solutions. This paper develops and implements a neural network-based method for skin cancer prediction to expose the neural network's strength in this field. This method determines which form of deep learning is best for diagnosing diseases with an accuracy exceeds human ability in terms of speed and accuracy, and determines the optimum number of layers and neurons in each layer for both Convolutional Neural network (CNN) and Deep Neural Network (DNN) to obtain the best possible precision. The results of the proposed method showed impressive results, especially for CNN. There is a clear superiority of CNN over DNN. The CNN (which relies on convolution filters) provides great results in extracting features due to the focus on the intended area of the image without the surrounding area region of interest. This led to a remarkable decrease in the number of parameters and the speed of attaining results with higher accuracy. The results indicated that CNN has a high accuracy rate compared with the other existing methods where the accuracy rate of CNN is 98.5%.

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Reference1 articles.

1. .

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3