Convolutional Neural Network-Based Approach For Skin Lesion Classification

Author:

Oumoulylte Mariame,Omari Alaoui Ali,Farhaoui Yousef,El Allaoui Ahmad,Bahri Abdelkhalak

Abstract

Skin cancer represents one of the primary forms of cancer arising from various dermatological disorders. It can be further categorized based on morphological characteristics, coloration, structure, and texture. Given the rising incidence of skin cancer, its significant mortality rates, and the substantial costs associated with medical treatment, the imperative lies in early detection to promptly diagnose symptoms and initiate appropriate interventions. Traditionally, skin cancer diagnosis and detection involve manual screening and visual examination conducted by dermatologists. these techniques are complex, error-prone, and time-consuming. Machine learning algorithms, particularly deep learning approaches, have been applied to analyze images of skin lesions, detect potential cancerous growths, and provide predictions regarding the likelihood of malignancy. In this paper, we have developed an optimized deep convolutional neural network (DCNN) specifically tailored for classifying skin lesions into benign and malignant categories. Thereby, enhancing the precision of disease diagnosis. Our study encompassed the utilization of a dataset comprising 3,297 dermoscopic images. To enhance the model's performance, we applied rigorous data preprocessing techniques and softmax activation algorithms. The suggested approach employs multiple optimizers, including Adam, RMSProp, and SGD, all configured with a learning rate of 0.0001. The outcomes of our experiments reveal that the Adam optimizer outperforms the others in distinguishing benign and malignant skin lesions within the ISIC dataset, boasting an accuracy score of 84 %, a loss rate of 32 %, a recall rating of 85 %, a precision score of 85 %, a f1-score of 85 %, and a ROC-AUC of 83 %

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3