Influence of CeO2 nanoparticles on seed germination and synthesis of phenols in spruce seedlings

Author:

Pinchuk A. P.ORCID,Likhanov A. F.ORCID,Ivanyuk I. V.ORCID,Spivak M. Ya.ORCID

Abstract

Modern technologies make it possible to obtain nanoparticles of biogenic metals for use as an additional source of micronutrient for plants. However, the complexity of mass application of nanosized metal particles and their oxides is due to the significant differences in physicochemical properties of nanocrystalline structures which are dependent on production technology, nanoparticle size, surface charge (-potential), and stabilization methods. The biocompatibility and nature of nanoparticles has an impact on living organisms. Regarding the effectiveness and feasibility of using cerium dioxide nanoparticles in crop practice, there is no definitive conclusion. Due to difficulty in the preparation of planting material for seedlings of conifers, the study of the effect of nanocrystalline cerium dioxide on plants is not well researched. The aim of our research was to study the effect of nanocrystalline cerium dioxide solution on the germination of spruce seeds and then to evaluate its effect on the synthesis of phenols as components of the antioxidant system within seedlings. The research used methods for determining the germination energy and seed similarities. Other methods used in this research were determining the content of phenolic compounds, flavonoids, and phenolic antioxidants. The results showed that nanocrystalline cerium dioxide in a concentration of solution from 0.1 to 1.0 mg/mL stimulates the germination of spruce seeds. Under the influence of nanoparticles at a concentration of 0.1 mg/L in the tissues of spruce seedlings increases the content of phenolic compounds. The increase in antioxidant activity of phenols in seedling tissues while decreasing their total amount at a concentration of nanocrystalline cerium dioxide from 0.5 to 1.0 mg/L occurs when increasing the total pool of flavonoids, which are determined by high antioxidant activity. Nanocrystalline cerium dioxide is a promising material for stimulating germination energy and on the overall germination of spruce seeds.

Publisher

National University of Life and Environmental Sciences of Ukraine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3