Author:
Liu Chuan, ,Xiang Xianbo,Huang Jian,Yang Shaolong,Shaoze Zhang,Su Xiang,Zhang Yunfei, ,
Abstract
This paper presents the development of autonomy capability for an unmanned surface vehicle (USV). The development mainly focuses on the high-level autonomy on perception, path planning, guidance and control to achieve real sea applications of the USV. First, visual recognition and point cloud data processing techniques are utilized to achieve a real-time perception of the object in the sea environment. Second, detailed path planning strategies are illustrated to plan the easily reachable path for different missions, and the classic guidance and heading controller are adopted to implement the path following algorithm. Subsequently, these autonomy algorithms run in the high-level computer and render the actuator commands for the low-level embedded control system. Finally, sea trials of the USV are conducted by attending the 2020 Zhuhai Wanshan International Intelligent Vessel Competition (IIVC) in Dong Ao Island of South China Sea. The USV accomplish three missions: 1) path following, 2) navigating around the obstacle, and 3) rescuing the drowning. Sea trial results verify the autonomy of the USV in terms of the achieved performances.
Publisher
Faculty of Mechanical Engineering and Naval Architecture, Univ. of Zagreb
Subject
Mechanical Engineering,Ocean Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献