Collaborative Obstacle Detection for Dual USVs Using MGNN-DANet with Movable Virtual Nodes and Double Attention

Author:

He Zehao1,Li Ligang2,Xu Hongbin2,Zong Lv2,Dai Yongshou2

Affiliation:

1. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China

Abstract

To reduce missed detections in LiDAR-based obstacle detection, this paper proposes a dual unmanned surface vessels (USVs) obstacle detection method using the MGNN-DANet template matching framework. Firstly, point cloud templates for each USV are created, and a clustering algorithm extracts suspected targets from the point clouds captured by a single USV. Secondly, a graph neural network model based on the movable virtual nodes is designed, introducing a neighborhood distribution uniformity metric. This model enhances the local point cloud distribution features of the templates and suspected targets through a local sampling strategy. Furthermore, a feature matching model based on double attention is developed, employing self-attention to aggregate the features of the templates and cross-attention to evaluate the similarity between suspected targets and aggregated templates, thereby identifying and locating another USV within the targets detected by each USV. Finally, the deviation between the measured and true positions of one USV is used to correct the point clouds obtained by the other USV, and obstacle positions are annotated through dual-view point cloud clustering. Experimental results show that, compared to single USV detection methods, the proposed method reduces the missed detection rate of maritime obstacles by 7.88% to 14.69%.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3