Combined algorithm for training neural networks of direct propagation

Author:

Makarchuk O.,Bovda V.,Ostapchuk V.

Abstract

The essence of learning neural networks of direct propagation is to minimize the function of the root mean square error of the output. This function is multimodal, ie it has several local minima. To find the minimum of such functions, gradient and stochastic methods are most often used, which do not guarantee finding the global minimum. The article analyzes the gradient algorithm of inverse error propagation and the stochastic method of particle swarm for training neural networks of direct propagation, their advantages and disadvantages are indicated. It is proposed to combine the advantages of both methods in a combined algorithm.The learning process using a combined algorithm is carried out in two stages. At the first stage, the stochastic method of particle swarm conducts a given number of learning epochs and determines the set of points in the vicinity of which there may be points of local minimum. In the second stage, the gradient backpropagation algorithm finds the local minimum for each point and selects the optimal one. If the set value of the standard error of the output is not reached, the learning steps are repeated.To evaluate the effectiveness of the proposed approach to the training of neural networks, a series of comparative experiments using the well-known database of computer attack recognition KDD Cup 1999 Data. The experiments compared the results of training the direct propagation neural network for the particle swarm method, the inverse error propagation algorithm, and the combined algorithm. The experimental results proved the superiority of the combined algorithm.

Publisher

Scientific Journals Publishing House

Reference9 articles.

1. 1. Хайкин С. Нейронные сети: полный курс. 2-е изд., испр. Пер. с англ. Москва: ООО «И. Д. Вильямс», 2006. 1104 с.

2. 2. Уайлд, Д. Дж. Методы поиска экстремума. Москва: Главная редакция физико-математической литературы издательства «Наука», 2017. 268 c.

3. 3. Карпенко А. П., Селиверстов Е. Ю. Обзор методов роя частиц для задачи глобальной оптимизации (Particle Swarm Optimization) // Наука и образование: электронное научно-техническое издание. 2009. № 3. URL: http://technomag.edu.ru/doc/116072.html.

4. 4. Е. В. Пальчевский, О. И. Христодуло. Разработка импульсной нейронной сети с возможностью скоростного обучения для нейтрализации DDoS-атак //Программные продукты и системы. Том 32, № 4. С. 613–627.

5. 5. Воробьева Ю. Н., Катасева Д. В., Катасев А. С., Кирпичников А. П. Нейросетевая модель выявления DDoS-атак // Вестник технологического университетата. 2018. Т. 21. № 2. С. 94–98.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3