Abstract
Existe una gran variedad de técnicas y modelos para el pronóstico del consumo de energía eléctrica, dependiendo tanto del tipo de usuario, como del horizonte de pronóstico y de la resolución de los datos disponibles. Asimismo, existen distintas métricas para evaluar el desempeño de estos modelos. Entonces, en esta investigación se propone una metodología integrada multicriterio para seleccionar el mejor modelo de pronóstico del consumo de energía eléctrica residencial, utilizando el proceso jerárquico analítico (AHP) para establecer los pesos de importancia relativa de los criterios de decisión, y la técnica para el orden de preferencia por similitud con la solución ideal (TOPSIS) para hacer la selección del modelo óptimo. La metodología se enmarca a su vez dentro de un proceso de ciencia de datos, a través del cual se extraen, procesan y analizan los datos, previo a la aplicación de los algoritmos de aprendizaje automático para obtener los modelos de pronósticos, que se corresponderán con las alternativas de decisión. Las métricas de desempeño en la fase de evaluación de los modelos, y las métricas de desempeño obtenidas de la fase de pronóstico, son consideradas como los criterios de decisión. De la técnica de comparaciones pareadas se obtuvo que el error porcentual absoluto medio (MAPE) de la fase de pronóstico fue el criterio con mayor peso de importancia, seguido del coeficiente de determinación R2 y del MAPE de la fase de evaluación. A partir del método TOPSIS, se seleccionó el modelo de Regresión Lineal Múltiple como el modelo óptimo de pronóstico.
Publisher
Universidad Tecnologica de Pereira - UTP