Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis

Author:

Deina Carolina1ORCID,dos Santos João Lucas Ferreira2ORCID,Biuk Lucas Henrique3ORCID,Lizot Mauro4ORCID,Converti Attilio5ORCID,Siqueira Hugo Valadares23ORCID,Trojan Flavio2ORCID

Affiliation:

1. Graduate Program in Industrial Engineering (PPGEP), Federal University of Rio Grande do Sul (UFRGS), Av. Paulo Gama, 110, Porto Alegre 90040-060, Brazil

2. Graduate Program in Industrial Engineering (PPGEP), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil

3. Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology-Parana (UTFPR), Rua Doutor Washington Subtil Chueire, 330, Ponta Grossa 84017-220, Brazil

4. Department of General and Applied Administration (DAGA), Federal University of Parana (UFPR), Avenue Prefeito Lothário Meissner, 632, Jardim Botânico 80210-170, Brazil

5. Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, Via Opera Pia 15, 15145 Genoa, Italy

Abstract

The planning of efficient policies based on forecasting electricity demand is essential to guarantee the continuity of energy supply for consumers. Some techniques for forecasting electricity demand have used specific procedures to define input variables, which can be particular to each case study. However, the definition of independent and casual variables is still an issue to be explored. There is a lack of models that could help the selection of independent variables, based on correlate criteria and level of importance integrated with artificial networks, which could directly impact the forecasting quality. This work presents a model that integrates a multi-criteria approach which provides the selection of relevant independent variables and artificial neural networks to forecast the electricity demand in countries. It provides to consider the particularities of each application. To demonstrate the applicability of the model a time series of electricity consumption from a southern region of Brazil was used. The dependent inputs used by the neural networks were selected using a traditional method called Wrapper. As a result of this application, with the multi-criteria ELECTRE I method was possible to recognize temperature and average evaporation as explanatory variables. When the variables selected by the multi-criteria approach were included in the predictive models, were observed more consistent results together with artificial neural networks, better than the traditional linear models. The Radial Basis Function Networks and Extreme Learning Machines stood out as potential techniques to be used integrated with a multi-criteria method to better perform the forecasting.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Fundação Araucária

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3