A new efficient probabilistic model for mining labeled ordered trees applied to glycobiology

Author:

Hashimoto Kosuke1,Aoki-Kinoshita Kiyoko Flora1,Ueda Nobuhisa1,Kanehisa Minoru1,Mamitsuka Hiroshi1

Affiliation:

1. Institute for Chemical Research, Kyoto University, Japan

Abstract

Mining frequent patterns from large datasets is an important issue in data mining. Recently, complex and unstructured (or semi-structured) datasets have appeared as targets for major data mining applications, including text mining, web mining and bioinformatics. Our work focuses on labeled ordered trees, which are typically semi-structured datasets. In bioinformatics, carbohydrate sugar chains, or glycans, can be modeled as labeled ordered trees. Glycans are the third major class of biomolecules, having important roles in signaling and recognition. For mining labeled ordered trees, we propose a new probabilistic model and its efficient learning scheme which significantly improves the time and space complexity of an existing probabilistic model for labeled ordered trees. We evaluated the performance of the proposed model, comparing it with those of other probabilistic models, using synthetic as well as real datasets from glycobiology. Experimental results showed that the proposed model drastically reduced the computation time of the competing model, keeping the predictive power and avoiding overfitting to the training data. Finally, we assessed our results on real data from a variety of biological viewpoints, verifying known facts in glycobiology.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3