Managing and analyzing carbohydrate data

Author:

Aoki Kiyoko F.1,Ueda Nobuhisa1,Yamaguchi Atsuko1,Akutsu Tatsuya1,Kanehisa Minoru1,Mamitsuka Hiroshi1

Affiliation:

1. Kyoto University, Kyoto, Japan

Abstract

One of the most vital molecules in multicellular organisms is the carbohydrate, as it is structurally important in the construction of such organisms. In fact, all cells in nature carry carbohydrate sugar chains, or glycans, that help modulate various cell-cell events for the development of the organism. Unfortunately, informatics research on glycans has been slow in comparison to DNA and proteins, largely due to difficulties in the biological analysis of glycan structures. Our work consists of data engineering approaches in order to glean some understanding of the current glycan data that is publicly available. In particular, by modeling glycans as labeled unordered trees, we have implemented a tree-matching algorithm for measuring tree similarity. Our algorithm utilizes proven efficient methodologies in computer science that has been extended and developed for glycan data. Moreover, since glycans are recognized by various agents in multicellular organisms, in order to capture the patterns that might be recognized, we needed to somehow capture the dependencies that seem to range beyond the directly connected nodes in a tree. Therefore, by defining glycans as labeled ordered trees, we were able to develop a new probabilistic tree model such that sibling patterns across a tree could be mined. We provide promising results from our methodologies that could prove useful for the future of glycome informatics.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference25 articles.

1. AOKI ET AL., Efficient tree-matching methods for accurate carbohydrate database queries;Genome Informatics,2003

2. Statistical Inference for Probabilistic Functions of Finite State Markov Chains

3. Chemical Glycobiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3