Adapting Web information extraction knowledge via mining site-invariant and site-dependent features

Author:

Wong Tak-Lam1,Lam Wai2

Affiliation:

1. City University of Hong Kong, Kowloon, Hong Kong

2. The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

We develop a novel framework that aims at automatically adapting previously learned information extraction knowledge from a source Web site to a new unseen target site in the same domain. Two kinds of features related to the text fragments from the Web documents are investigated. The first type of feature is called, a site-invariant feature. These features likely remain unchanged in Web pages from different sites in the same domain. The second type of feature is called a site-dependent feature. These features are different in the Web pages collected from different Web sites, while they are similar in the Web pages originating from the same site. In our framework, we derive the site-invariant features from previously learned extraction knowledge and the items previously collected or extracted from the source Web site. The derived site-invariant features will be exploited to automatically seek a new set of training examples in the new unseen target site. Both the site-dependent features and the site-invariant features of these automatically discovered training examples will be considered in the learning of new information extraction knowledge for the target site. We conducted extensive experiments on a set of real-world Web sites collected from three different domains to demonstrate the performance of our framework. For example, by just providing training examples from one online book catalog Web site, our approach can automatically extract information from ten different book catalog sites achieving an average precision and recall of 71.9% and 84.0% respectively without any further manual intervention.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Extraction of Popular Product Attributes from E-Commerce Web Sites by Considering Customer Reviews;ACM Transactions on Internet Technology;2016-04-20

2. An Adaptive Web Information Extraction Approach Based on STU-DOM Tree;Applied Mechanics and Materials;2013-09

3. Mining Product Features from the Web: A Self-supervised Approach;Lecture Notes in Business Information Processing;2013

4. A Fast Method for Web Template Extraction via a Multi-sequence Alignment Approach;Communications in Computer and Information Science;2013

5. Web Interface Interpretation Using Graph Grammars;IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews);2012-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3