Unsupervised Extraction of Popular Product Attributes from E-Commerce Web Sites by Considering Customer Reviews

Author:

Bing Lidong1ORCID,Wong Tak-Lam2,Lam Wai3

Affiliation:

1. Machine Learning Department, Carnegie Mellon University, PA, USA

2. Department of Mathematics and Information Technology, The Hong Kong Institute of Education, N. T., Hong Kong

3. Key Laboratory of High Confidence Software Technologies, Ministry of Education (CUHK Sub-Lab), and Department of Systems Engineering & Engineering Management, The Chinese University of Hong Kong, N.T., Hong Kong

Abstract

We develop an unsupervised learning framework for extracting popular product attributes from product description pages originated from different E-commerce Web sites. Unlike existing information extraction methods that do not consider the popularity of product attributes, our proposed framework is able to not only detect popular product features from a collection of customer reviews but also map these popular features to the related product attributes. One novelty of our framework is that it can bridge the vocabulary gap between the text in product description pages and the text in customer reviews. Technically, we develop a discriminative graphical model based on hidden Conditional Random Fields. As an unsupervised model, our framework can be easily applied to a variety of new domains and Web sites without the need of labeling training samples. Extensive experiments have been conducted to demonstrate the effectiveness and robustness of our framework.

Funder

Research Grant Council of the Hong Kong Special Administrative Region, China

The Hong Kong Institute of Education

Direct Grant of the Faculty of Engineering, CUHK

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3