Efficient optimistic concurrency control using loosely synchronized clocks

Author:

Adya Atul1,Gruber Robert1,Liskov Barbara1,Maheshwari Umesh1

Affiliation:

1. Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA

Abstract

This paper describes an efficient optimistic concurrency control scheme for use in distributed database systems in which objects are cached and manipulated at client machines while persistent storage and transactional support are provided by servers. The scheme provides both serializability and external consistency for committed transactions; it uses loosely synchronized clocks to achieve global serialization. It stores only a single version of each object, and avoids maintaining any concurrency control information on a per-object basis; instead, it tracks recent invalidations on a per-client basis, an approach that has low in-memory space overhead and no per-object disk overhead. In addition to its low space overheads, the scheme also performs well. The paper presents a simulation study that compares the scheme to adaptive callback locking, the best concurrency control scheme for client-server object-oriented database systems studied to date. The study shows that our scheme outperforms adaptive callback locking for low to moderate contention workloads, and scales better with the number of clients. For high contention workloads, optimism can result in a high abort rate; the scheme presented here is a first step toward a hybrid scheme that we expect to perform well across the full range of workloads.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transaction Scheduling Heuristics in Mobile Distributed Real Time Database System;Recent Advances in Computer Science and Communications;2020-10-18

2. Optimistic Transaction Processing in Deterministic Database;Journal of Computer Science and Technology;2020-03

3. Keeping Master Green at Scale;Proceedings of the Fourteenth EuroSys Conference 2019;2019-03-25

4. Efficient, Consistent Distributed Computation with Predictive Treaties;Proceedings of the Fourteenth EuroSys Conference 2019;2019-03-25

5. Sundial;Proceedings of the VLDB Endowment;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3