Affiliation:
1. Massachusetts Institute of Technology
2. Carnegie Mellon University
3. Massachusetts Institute of Technology and Two Sigma Investments, LP
Abstract
Distributed transactions suffer from poor performance due to two major limiting factors. First, distributed transactions suffer from high latency because each of their accesses to remote data incurs a long network delay. Second, this high latency increases the likelihood of contention among distributed transactions, leading to high abort rates and low performance.
We present
Sundial
, an in-memory distributed optimistic concurrency control protocol that addresses these two limitations. First, to reduce the transaction abort rate, Sundial dynamically determines the logical order among transactions at runtime, based on their data access patterns. Sundial achieves this by applying
logical leases
to each data element, which allows the database to dynamically calculate a transaction's logical commit timestamp. Second, to reduce the overhead of remote data accesses, Sundial allows the database to cache remote data in a server's local main memory and maintains cache coherence. With logical leases, Sundial integrates concurrency control and cache coherence into a simple unified protocol. We evaluate Sundial against state-of-the-art distributed concurrency control protocols. Sundial outperforms the next-best protocol by up to 57% under high contention. Sundial's caching scheme improves performance by up to 4.6× in workloads with high access skew.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献