VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation

Author:

Zhao Zhanhao1ORCID,Pan Hexiang2ORCID,Chen Gang3ORCID,Du Xiaoyong1ORCID,Lu Wei1ORCID,Ooi Beng Chin2ORCID

Affiliation:

1. Renmin University of China, Beijing, China

2. National University of Singapore, Singapore, Singapore

3. Zhejiang University, Hangzhou, China

Abstract

Cloud-native databases become increasingly popular while exposing to greater data security and correctness risks. Existing verifiable outsourced databases overlook either the correctness risk of transactions, or the disaggregation architecture: a key design consideration of cloud-native databases for performance and elasticity, or both. We present VeriTxn, a novel cloud-native database that efficiently provides verifiability of transaction correctness. VeriTxn relies on the trusted hardware (i.e., Intel SGX) to enable verifiable transaction processing. We build a page-structure cache in the trusted domain, where transactions can be verified with low, constant overhead. VeriTxn further optimizes the read-only transactions by exploiting disaggregation to fit the read-heavy workload in the cloud. We also integrate our proposal into MySQL, a popular open-source database. We conduct extensive experiments to compare VeriTxn against state-of-the-art verifiable databases and evaluate the performance of VeriTxn on MySQL. The results show that VeriTxn introduces tolerable performance degradation for verifiable transactions, while achieving up to 7.03× and 7.93× higher throughput than Litmus and LedgerDB, and its sustainable performance when integrated with MySQL.

Funder

National Natural Science Foundation of China

Singapore Ministry of Education Academic Research Fund Tier 3

Publisher

Association for Computing Machinery (ACM)

Reference78 articles.

1. The Seattle report on database research

2. Elle

3. Panagiotis Antonopoulos Arvind Arasu Kunal D. Singh Ken Eguro Nitish Gupta Rajat Jain Raghav Kaushik Hanuma Kodavalla Donald Kossmann Nikolas Ogg Ravi Ramamurthy Jakub Szymaszek Jeffrey Trimmer Kapil Vaswani Ramarathnam Venkatesan and Mike Zwilling. 2020. Azure SQL Database Always Encrypted. In SIGMOD. ACM 1511--1525. Panagiotis Antonopoulos Arvind Arasu Kunal D. Singh Ken Eguro Nitish Gupta Rajat Jain Raghav Kaushik Hanuma Kodavalla Donald Kossmann Nikolas Ogg Ravi Ramamurthy Jakub Szymaszek Jeffrey Trimmer Kapil Vaswani Ramarathnam Venkatesan and Mike Zwilling. 2020. Azure SQL Database Always Encrypted. In SIGMOD. ACM 1511--1525.

4. Panagiotis Antonopoulos Alex Budovski Cristian Diaconu Alejandro Hernandez Saenz Jack Hu Hanuma Kodavalla Donald Kossmann Sandeep Lingam Umar Farooq Minhas Naveen Prakash Vijendra Purohit Hugh Qu Chaitanya Sreenivas Ravella Krystyna Reisteter Sheetal Shrotri Dixin Tang and Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In SIGMOD. ACM 1743--1756. Panagiotis Antonopoulos Alex Budovski Cristian Diaconu Alejandro Hernandez Saenz Jack Hu Hanuma Kodavalla Donald Kossmann Sandeep Lingam Umar Farooq Minhas Naveen Prakash Vijendra Purohit Hugh Qu Chaitanya Sreenivas Ravella Krystyna Reisteter Sheetal Shrotri Dixin Tang and Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In SIGMOD. ACM 1743--1756.

5. Panagiotis Antonopoulos , Raghav Kaushik , Hanuma Kodavalla , Sergio Rosales Aceves , Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021 . SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD. ACM , 2437--2449. Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Rosales Aceves, Reilly Wong, Jason Anderson, and Jakub Szymaszek. 2021. SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD. ACM, 2437--2449.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VeriTxn: Verifiable Transactions for Cloud-Native Databases with Storage Disaggregation;Proceedings of the ACM on Management of Data;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3