Efficient architectural design space exploration via predictive modeling

Author:

Ipek Engin1,McKee Sally A.1,Singh Karan1,Caruana Rich1,Supinski Bronis R. de2,Schulz Martin2

Affiliation:

1. Cornell University, Ithaca, New York

2. Lawrence Livermore National Laboratory, Livermore, California

Abstract

Efficiently exploring exponential-size architectural design spaces with many interacting parameters remains an open problem: the sheer number of experiments required renders detailed simulation intractable. We attack this via an automated approach that builds accurate predictive models. We simulate sampled points, using results to teach our models the function describing relationships among design parameters. The models can be queried and are very fast, enabling efficient design tradeoff discovery. We validate our approach via two uniprocessor sensitivity studies, predicting IPC with only 1--2% error. In an experimental study using the approach, training on 1% of a 250-K-point CMP design space allows our models to predict performance with only 4--5% error. Our predictive modeling combines well with techniques that reduce the time taken by each simulation experiment, achieving net time savings of three-four orders of magnitude.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference54 articles.

1. Applying neural networks to computer system performance tuning

2. Borkar S. Dubey P. Kahn K. Kuck D. Mulder H. Pawlowski S. and Rattner J. 2006. Platform 2015: Intel processsor and platform evolution for the next decade. White Paper Intel Corporation. Borkar S. Dubey P. Kahn K. Kuck D. Mulder H. Pawlowski S. and Rattner J. 2006. Platform 2015: Intel processsor and platform evolution for the next decade. White Paper Intel Corporation.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3