Prediction Modeling for Application-Specific Communication Architecture Design of Optical NoC

Author:

Trajkovic Jelena1ORCID,Karimi Sara2,Hangsan Samantha1,Zhang Wenlu1

Affiliation:

1. California State University Long Beach, Long Beach, California, USA

2. Concordia University, Montreal, Quebec, Canada

Abstract

Multi-core systems-on-chip are becoming state-of-the-art. Therefore, there is a need for a fast and energy-efficient interconnect to take full advantage of the computational capabilities. Integration of silicon photonics with a traditional electrical interconnect in a Network-on-Chip (NoC) proposes a promising solution for overcoming the scalability issues of electrical interconnect. In this article, we derive and evaluate prediction modeling techniques for the design space exploration (DSE) of application-specific communication architectures for an Optical Network-on-Chip (ONoC). Our proposed model accurately predicts network packet latency, contention delay, and the static and dynamic energy consumption of the network. This work specifically addresses the challenge of accurately estimating performance metrics of the entire design space without having to perform time-consuming and computationally intensive exhaustive simulations. The proposed technique, based on machine learning (ML), can build accurate prediction models using only 10% to 50% (best case and worst case) of the entire design space. The accuracy, expressed as R 2 (Coefficient of Determination) is 0.99901, 0.99967, 0.99996, and 0.99999 for network packet latency, contention delay, static energy consumption, and dynamic energy consumption, respectively, in six different benchmarks from the Splash-2 benchmark suite, chosen among 6 different machine learning prediction models.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3