Affiliation:
1. UNSW Sydney and †Macquarie University, NSW, Australia
2. UNSW Sydney and Macquarie University, NSW, Australia
Abstract
Space processing applications deployed on SRAM-based Field Programmable Gate Arrays (FPGAs) are vulnerable to radiation-induced Single Event Upsets (SEUs). Compared with the well-known SEU mitigation solution—Triple Modular Redundancy (TMR) with configuration memory scrubbing—TMR with module-based error recovery (MER) is notably more energy efficient and responsive in repairing soft-errors in the system. Unfortunately, TMR-MER systems also need to resort to scrubbing when errors occur between sub-components, such as in interconnection nets, which are not recovered by MER. This article addresses this problem by proposing a fine-grained module-based error recovery technique, which can localize and correct errors that classic MER fails to do without additional system hardware. We evaluate our proposal via fault-injection campaigns on three types of circuits implemented in Xilinx 7-Series devices. With respect to scrubbing, we observed reductions in the mean time to repair configuration memory errors of between 48.5% and 89.4%, while reductions in energy used recovering from configuration memory errors were estimated at between 77.4% and 96.1%. These improvements result in higher reliability for systems employing TMR with fine-grained reconfiguration than equivalent systems relying on scrubbing for configuration error recovery.
Funder
Discovery
Australian Research Council's Linkage
Publisher
Association for Computing Machinery (ACM)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献