Reconfigurable Framework for Resilient Semantic Segmentation for Space Applications

Author:

Sabogal Sebastian1,George Alan1,Crum Gary2

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

2. NASA Goddard Space Flight Center, Greenbelt, MD

Abstract

Deep learning (DL) presents new opportunities for enabling spacecraft autonomy, onboard analysis, and intelligent applications for space missions. However, DL applications are computationally intensive and often infeasible to deploy on radiation-hardened (rad-hard) processors, which traditionally harness a fraction of the computational capability of their commercial-off-the-shelf counterparts. Commercial FPGAs and system-on-chips present numerous architectural advantages and provide the computation capabilities to enable onboard DL applications; however, these devices are highly susceptible to radiation-induced single-event effects (SEEs) that can degrade the dependability of DL applications. In this article, we propose Reconfigurable ConvNet (RECON), a reconfigurable acceleration framework for dependable, high-performance semantic segmentation for space applications. In RECON, we propose both selective and adaptive approaches to enable efficient SEE mitigation. In our selective approach, control-flow parts are selectively protected by triple-modular redundancy to minimize SEE-induced hangs, and in our adaptive approach, partial reconfiguration is used to adapt the mitigation of dataflow parts in response to a dynamic radiation environment. Combined, both approaches enable RECON to maximize system performability subject to mission availability constraints. We perform fault injection and neutron irradiation to observe the susceptibility of RECON and use dependability modeling to evaluate RECON in various orbital case studies to demonstrate a 1.5–3.0× performability improvement in both performance and energy efficiency compared to static approaches.

Funder

SHREC industry and agency members and by the IUCRC Program of the National Science Foundation

Los Alamos Neutron Science Center

NNSA User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference59 articles.

1. SegNet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan Vijay;IEEE Trans. Pattern Anal. Mach. Intell.,2017

2. Effectiveness of internal versus external SEU scrubbing mitigation strategies in a Xilinx FPGA: Design, test, and analysis;Berg Melanie;IEEE Trans. Nucl. Sci.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of RISC-V Silicon Under Neutron Radiation;2023 IEEE Aerospace Conference;2023-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3