On-the-fly Vertex Reuse for Massively-Parallel Software Geometry Processing

Author:

Kenzel Michael1,Kerbl Bernhard1,Tatzgern Wolfgang1,Ivanchenko Elena1,Schmalstieg Dieter1,Steinberger Markus1

Affiliation:

1. Graz University of Technology, Institute of Computer Graphics and Vision, Graz, Austria

Abstract

Due to its flexibility, compute mode is becoming more and more attractive as a way to implement many of the algorithms part of a state-of-the-art rendering pipeline. A key problem commonly encountered in graphics applications is streaming vertex and geometry processing. In a typical triangle mesh, the same vertex is on average referenced six times. To avoid redundant computation during rendering, a post-transform cache is traditionally employed to reuse vertex processing results. However, such a vertex cache can generally not be implemented efficiently in software and does not scale well as parallelism increases. We explore alternative strategies for reusing per-vertex results on-the-fly during massively-parallel software geometry processing. Given an input stream divided into batches, we analyze the effectiveness of sorting, hashing, and intra-thread-group communication for identifying and exploiting local reuse potential. We design and present four vertex reuse strategies tailored to modern GPU architectures. We demonstrate that, in a variety of applications, these strategies not only achieve effective reuse of vertex processing results, but can boost performance by up to 2-3x compared to a naïve approach. Curiously, our experiments also show that our batch-based approaches exhibit behavior similar to the OpenGL implementation on current graphics hardware.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

General Arts and Humanities

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

2. A high-performance software graphics pipeline architecture for the GPU;ACM Transactions on Graphics;2018-08-31

3. Revisiting The Vertex Cache;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2018-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3