PowerLyra

Author:

Chen Rong1,Shi Jiaxin1,Chen Yanzhe1,Zang Binyu1,Guan Haibing1,Chen Haibo1

Affiliation:

1. Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China

Abstract

Natural graphs with skewed distributions raise unique challenges to distributed graph computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” design that uniformly processes all vertices, which either suffer from notable load imbalance and high contention for high-degree vertices (e.g., Pregel and GraphLab) or incur high communication cost and memory consumption even for low-degree vertices (e.g., PowerGraph and GraphX). In this article, we argue that skewed distributions in natural graphs also necessitate differentiated processing on high-degree and low-degree vertices. We then introduce PowerLyra, a new distributed graph processing system that embraces the best of both worlds of existing graph-parallel systems. Specifically, PowerLyra uses centralized computation for low-degree vertices to avoid frequent communications and distributes the computation for high-degree vertices to balance workloads. PowerLyra further provides an efficient hybrid graph partitioning algorithm (i.e., hybrid-cut) that combines edge-cut (for low-degree vertices) and vertex-cut (for high-degree vertices) with heuristics. To improve cache locality of inter-node graph accesses, PowerLyra further provides a locality-conscious data layout optimization. PowerLyra is implemented based on the latest GraphLab and can seamlessly support various graph algorithms running in both synchronous and asynchronous execution modes. A detailed evaluation on three clusters using various graph-analytics and MLDM (Machine Learning and Data Mining) applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from 1.49X) for real-world and synthetic graphs, respectively, and is much faster than other systems like GraphX and Giraph, yet with much less memory consumption. A porting of hybrid-cut to GraphX further confirms the efficiency and generality of PowerLyra.

Funder

National Natural Science Foundation of China

National Key Research 8 Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GPChain: Optimizing Cross-Shard Transactions and Load Imbalance in Sharded Blockchain Networks;Lecture Notes in Computer Science;2024

2. Expressway: Prioritizing Edges for Distributed Evaluation of Graph Queries;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of Cores;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

4. GraphMedia: Communication-balanced Graph Searching for Billion-scale Social Media Access;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

5. Neu(t)ralMC: energy-efficient open source Monte Carlo algorithm for assessing photon transport in turbid media;Optics Express;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3