PECC: parallel expansion based on clustering coefficient for efficient graph partitioning
-
Published:2024-06-10
Issue:
Volume:
Page:
-
ISSN:0926-8782
-
Container-title:Distributed and Parallel Databases
-
language:en
-
Short-container-title:Distrib Parallel Databases
Author:
Shi Chengcheng,Xie Zhenping
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X.: A survey of graph neural networks for recommender systems: challenges, methods, and directions. ACM Trans. Recomm. Syst. 1(1), 1–51 (2023) 2. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135–146 (2010) 3. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: $$\{$$PowerGraph$$\}$$: distributed $$\{$$graph-parallel$$\}$$ computation on natural graphs. In: 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pp. 17–30 (2012) 4. Xu, J., Bai, Z., Fan, W., Lai, L., Li, X., Li, Z., Qian, Z., Wang, L., Wang, Y., Yu, W.: Graphscope: a one-stop large graph processing system. Proc. VLDB Endow. 14(12), 2703–2706 (2021) 5. Fan, W., He, T., Lai, L., Li, X., Li, Y., Li, Z., Qian, Z., Tian, C., Wang, L., Xu, J.: Graphscope: a unified engine for big graph processing. Proc. VLDB Endow. 14(12), 2879–2892 (2021)
|
|