FSS-Tag

Author:

Chang Liqiong1ORCID,Yang Xiaofeng1ORCID,Liu Ruyue1ORCID,Xie Guodong1ORCID,Wang Fuwei1ORCID,Wang Ju1ORCID

Affiliation:

1. Northwest University, Xi'an, China

Abstract

Material sensing is crucial in many emerging applications, such as waste classification and hazardous material detection. Although existing Radio Frequency (RF) signal based systems achieved great success, they have limited identification accuracy when either RF signals can not penetrate through a target or a target has different outer and inner materials. This paper introduces a Frequency Selective Surface (FSS) tag based high accuracy material identification system, namely FSS-Tag, which utilises both the penetrating signals and the coupling effect. Specifically, we design and attach a FSS tag to a target, and use frequency responses of the tag for material sensing, since different target materials have different frequency responses. The key advantage of our system is that, when RF signals pass through a target with the FSS tag, the penetrating signal responds more to the inner material, and the coupling effect (between the target and the tag) reflects more about the outer material; thus, one can achieve a higher sensing accuracy. The challenge lies in how to find optimal tag design parameters so that the frequency response of different target materials can be clearly distinguished. We address this challenge by establishing a tag parameter optimization model. Real-world experiments show that FSS-Tag achieves more than 91% accuracy on identifying eight common materials, and improves the accuracy by up to 38% and 8% compared with the state of the art (SOTA) penetrating signal based method TagScan and the SOTA coupling effect based method Tagtag.

Publisher

Association for Computing Machinery (ACM)

Reference33 articles.

1. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics

2. Filippo Costa, Agostino Monorchio, and Giuliano Manara. 2014. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. The Applied Computational Electromagnetics Society Journal (ACES) (2014), 960--976.

3. Sylvain Cussat-Blanc and Jordan Pollack. 2014. Cracking the egg: Virtual embryogenesis of real robots. Artificial life 20, 3 (2014), 361--383.

4. LiquID

5. WiMi: Target Material Identification with Commodity Wi-Fi Devices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3