User-Based Collaborative Filtering Mobile Health System

Author:

Kao Hsien-Te1,Yan Shen1,Hosseinmardi Homa1,Narayanan Shrikanth1,Lerman Kristina1,Ferrara Emilio1

Affiliation:

1. USC Information Sciences Institute

Abstract

Mobile health systems predict health conditions based on multimodal signals. Users are often reluctant to provide their health status over privacy concerns. It is challenging to make health predictions without sufficient historical data from the users. In this paper, we propose a user-based collaborative filtering mobile health system. The system requests users to provide a few health labels. These labels are used to determine cohort similarity and discarded afterward to ensure privacy protection. The cohorts are designed to maximize user similarity across health labels, variable relationships, and sensor data. Our system predicts users based on the health information from their cohort. We empirically evaluate the system by conducting a ten-week longitudinal study to assess the health conditions of 212 hospital workers using mobile devices, wearables, and sensors. The results show successful cohort assignments with five health labels. Health predictions achieve promising performance without historical data. Our system demonstrates strong interpretability, predictability, and usability.

Funder

NSF

Intelligence Advanced Research Projects Activity

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models for Wearable Sensor-Based Human Activity Recognition, Health Monitoring, and Behavioral Modeling: A Survey of Early Trends, Datasets, and Challenges;Sensors;2024-08-04

2. Cohort comfort models — Using occupant’s similarity to predict personal thermal preference with less data;Building and Environment;2023-01

3. Knowledge-aware Graph Attention Network with Distributed & Cross Learning for Collaborative Recommendation;2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2022-12

4. Exploring Mental Health Communications among Instagram Coaches;2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM);2022-11-10

5. Estimation of Steering and Throttle Angles of a Motorized Mobility Scooter with Inertial Measurement Units for Continuous Quantification of Driving Operation;Sensors;2022-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3