Abstract
With the growing demand from elderly persons for alternative mobility solutions, motorized mobility scooters (MMSs) have been gaining importance as an essential assistive technology to aid independent living in local communities. The increased use of MMSs, however, has raised safety issues during driving and magnified the necessity to evaluate and improve user driving skills. This study is intended to develop a novel quantitative monitoring method for MMS driving operation using inertial measurement units (IMUs). The proposed method used coordinate transformations around the rotational axes of the steering wheel and the throttle lever to estimate the steering and throttle operating angles based on gravitational accelerations measured by IMUs. Consequently, these operating angles can be monitored simply using an IMU attached to the throttle lever. Validation experiments with a test MMS in the stationary state confirmed the consistency of the proposed coordinate transformation with the MMS’s geometrical structure. The driving test also demonstrated that the operating angles were estimated correctly on various terrains and that the effects of terrain inclination were compensated using an additional IMU attached to the scooter body. This method will be applicable to the quantitative monitoring of driving behavior and act as a complementary tool for the existing skills’ evaluation methods.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献