Autonomic Provisioning with Self-Adaptive Neural Fuzzy Control for Percentile-Based Delay Guarantee

Author:

Lama Palden1,Zhou Xiaobo1

Affiliation:

1. University of Colorado, Colorado Springs

Abstract

Autonomic server provisioning for performance assurance is a critical issue in Internet services. It is challenging to guarantee that requests flowing through a multi-tier system will experience an acceptable distribution of delays. The difficulty is mainly due to highly dynamic workloads, the complexity of underlying computer systems, and the lack of accurate performance models. We propose a novel autonomic server provisioning approach based on a model-independent self-adaptive Neural Fuzzy Control (NFC). Existing model-independent fuzzy controllers are designed manually on a trial-and-error basis, and are often ineffective in the face of highly dynamic workloads. NFC is a hybrid of control-theoretical and machine learning techniques. It is capable of self-constructing its structure and adapting its parameters through fast online learning. We further enhance NFC to compensate for the effect of server switching delays. Extensive simulations demonstrate that, compared to a rule-based fuzzy controller and a Proportional-Integral controller, the NFC-based approach delivers superior performance assurance in the face of highly dynamic workloads. It is robust to variation in workload intensity, characteristics, delay target, and server switching delays. We demonstrate the feasibility and performance of the NFC-based approach with a testbed implementation in virtualized blade servers hosting a multi-tier online auction benchmark.

Funder

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian-Driven Automated Scaling in Stream Computing With Multiple QoS Targets;IEEE Transactions on Parallel and Distributed Systems;2024-07

2. Combining neural networks and control: potentialities, patterns and perspectives;IFAC-PapersOnLine;2023

3. Demystifying Multi-Tier Cost Model for Scheduling in Fog Communication Networks;Advances in Wireless Technologies and Telecommunication;2022

4. Robust Resource Scaling of Containerized Microservices with Probabilistic Machine learning;2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC);2020-12

5. A hybrid approach combining control theory and AI for engineering self-adaptive systems;Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems;2020-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3