A Partitioned CAM Architecture with FPGA Acceleration for Binary Descriptor Matching

Author:

Soleimani Parastoo1ORCID,Capson David W.1ORCID,Li Kin Fun1ORCID

Affiliation:

1. University of Victoria, Canada

Abstract

An efficient architecture for image descriptor matching that uses a partitioned content-addressable memory (CAM)-based approach is proposed. CAM is frequently used in high-speed content-matching applications. However, due to its lack of functionality to support approximate matching, conventional CAM is not directly useful for image descriptor matching. Our modifications improve the CAM architecture to support approximate content matching for selecting image matches with local binary descriptors. Matches are based on Hamming distances computed for all possible pairs of binary descriptors extracted from two images. We demonstrate an FPGA-based implementation of our CAM-based descriptor-matching unit to illustrate the high matching speed of our design. The time complexity of our modified CAM method for binary descriptor matching is O(n). Our method performs binary descriptor matching at a rate of one descriptor per clock cycle at a frequency of 102 MHz. The resource utilization and timing metrics of several experiments are reported to demonstrate the efficacy and scalability of our design.

Funder

University of Victoria and Discovery

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3