Multiway K-Clustered Tensor Approximation

Author:

Tsai Yu-Ting1

Affiliation:

1. Yuan Ze University, Taoyuan City, Taiwan, R.O.C.

Abstract

This article presents a generalized sparse multilinear model, namely multiway K-clustered tensor approximation (MK-CTA), for synthesizing photorealistic 3D images from large-scale multidimensional visual datasets. MK-CTA extends previous tensor approximation algorithms, particularly K-clustered tensor approximation (K-CTA) [Tsai and Shih 2012], to partition a multidimensional dataset along more than one dimension into overlapped clusters. On the contrary, K-CTA only sparsely clusters a dataset along just one dimension and often fails to efficiently approximate other unclustered dimensions. By generalizing K-CTA with multiway sparse clustering, MK-CTA can be regarded as a novel sparse tensor-based model that simultaneously exploits the intra- and inter-cluster coherence among different dimensions of an input dataset. Our experiments demonstrate that MK-CTA can accurately and compactly represent various multidimensional datasets with complex and sharp visual features, including bidirectional texture functions (BTFs) [Dana et al. 1999], time-varying light fields (TVLFs) [Bando et al. 2013], and time-varying volume data (TVVD) [Wang et al. 2010], while easily achieving high rendering rates in practical graphics applications.

Funder

Ministry of Science and Technology of Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TTHRESH: Tensor Compression for Multidimensional Visual Data;IEEE Transactions on Visualization and Computer Graphics;2020-09-01

2. A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field Videos;ACM Transactions on Graphics;2019-06-15

3. Cache-Aware Out-of-Core Tensor Decomposition on GPUs;J INF SCI ENG;2018

4. Multiresolution Volume Filtering in the Tensor Compressed Domain;IEEE Transactions on Visualization and Computer Graphics;2018-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3