Near-invariant blur for depth and 2D motion via time-varying light field analysis

Author:

Bando Yosuke1,Holtzman Henry2,Raskar Ramesh2

Affiliation:

1. Toshiba Corporation and MIT Media Lab, Cambridge, MA

2. MIT Media Lab, Cambridge, MA

Abstract

Recently, several camera designs have been proposed for either making defocus blur invariant to scene depth or making motion blur invariant to object motion. The benefit of such invariant capture is that no depth or motion estimation is required to remove the resultant spatially uniform blur. So far, the techniques have been studied separately for defocus and motion blur, and object motion has been assumed 1D (e.g., horizontal). This article explores a more general capture method that makes both defocus blur and motion blur nearly invariant to scene depth and in-plane 2D object motion. We formulate the problem as capturing a time-varying light field through a time-varying light field modulator at the lens aperture, and perform 5D (4D light field + 1D time) analysis of all the existing computational cameras for defocus/motion-only deblurring and their hybrids. This leads to a surprising conclusion that focus sweep, previously known as a depth-invariant capture method that moves the plane of focus through a range of scene depth during exposure, is near-optimal both in terms of depth and 2D motion invariance and in terms of high-frequency preservation for certain combinations of depth and motion ranges. Using our prototype camera, we demonstrate joint defocus and motion deblurring for moving scenes with depth variation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3