Invertible motion blur in video

Author:

Agrawal Amit1,Xu Yi1,Raskar Ramesh2

Affiliation:

1. Mitsubishi Electric Research Labs (MERL), Cambridge, MA

2. MIT Media Lab, Cambridge, MA

Abstract

We show that motion blur in successive video frames is invertible even if the point-spread function (PSF) due to motion smear in a single photo is non-invertible. Blurred photos exhibit nulls (zeros) in the frequency transform of the PSF, leading to an ill-posed deconvolution. Hardware solutions to avoid this require specialized devices such as the coded exposure camera or accelerating sensor motion. We employ ordinary video cameras and introduce the notion of null-filling along with joint-invertibility of multiple blur-functions. The key idea is to record the same object with varying PSFs, so that the nulls in the frequency component of one frame can be filled by other frames. The combined frequency transform becomes null-free, making deblurring well-posed. We achieve jointly-invertible blur simply by changing the exposure time of successive frames. We address the problem of automatic deblurring of objects moving with constant velocity by solving the four critical components: preservation of all spatial frequencies, segmentation of moving parts, motion estimation of moving parts, and non-degradation of the static parts of the scene. We demonstrate several challenging cases of object motion blur including textured backgrounds and partial occluders.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A method with ultra-high angular resolution for X-ray diffraction experiments;Journal of Synchrotron Radiation;2024-01-01

2. Mitigating Motion Blur for Robust 3D Baseball Player Pose Modeling for Pitch Analysis;Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports;2023-10-29

3. Reflectance-based Code Optimization for Motion Deblurring;2023 International Conference on Electronics, Information, and Communication (ICEIC);2023-02-05

4. Video Folding: Increased Framerate for Semi-Repetitive Sequences;IEEE Transactions on Visualization and Computer Graphics;2021-10-01

5. Deep Convolutional-Neural-Network-Based Channel Attention for Single Image Dynamic Scene Blind Deblurring;IEEE Transactions on Circuits and Systems for Video Technology;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3