Ligra

Author:

Shun Julian1,Blelloch Guy E.1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

There has been significant recent interest in parallel frameworks for processing graphs due to their applicability in studying social networks, the Web graph, networks in biology, and unstructured meshes in scientific simulation. Due to the desire to process large graphs, these systems have emphasized the ability to run on distributed memory machines. Today, however, a single multicore server can support more than a terabyte of memory, which can fit graphs with tens or even hundreds of billions of edges. Furthermore, for graph algorithms, shared-memory multicores are generally significantly more efficient on a per core, per dollar, and per joule basis than distributed memory systems, and shared-memory algorithms tend to be simpler than their distributed counterparts. In this paper, we present a lightweight graph processing framework that is specific for shared-memory parallel/multicore machines, which makes graph traversal algorithms easy to write. The framework has two very simple routines, one for mapping over edges and one for mapping over vertices. Our routines can be applied to any subset of the vertices, which makes the framework useful for many graph traversal algorithms that operate on subsets of the vertices. Based on recent ideas used in a very fast algorithm for breadth-first search (BFS), our routines automatically adapt to the density of vertex sets. We implement several algorithms in this framework, including BFS, graph radii estimation, graph connectivity, betweenness centrality, PageRank and single-source shortest paths. Our algorithms expressed using this framework are very simple and concise, and perform almost as well as highly optimized code. Furthermore, they get good speedups on a 40-core machine and are significantly more efficient than previously reported results using graph frameworks on machines with many more cores.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 455 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPOCK: Reverse Packet Traversal for Deadlock Recovery;IEEE Design & Test;2023-12

2. Optimizing Single-Source Graph Execution on NUMA Machines;2023 XIII Brazilian Symposium on Computing Systems Engineering (SBESC);2023-11-21

3. Hypergraph-based locality-enhancing methods for graph operations in Big Data applications;The International Journal of High Performance Computing Applications;2023-11-20

4. A Quantitative Approach for Adopting Disaggregated Memory in HPC Systems;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

5. Morpheus: An Adaptive DRAM Cache with Online Granularity Adjustment for Disaggregated Memory;2023 IEEE 41st International Conference on Computer Design (ICCD);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3