MST: Topology-Aware Message Aggregation for Exascale Graph Processing of Traversal-Centric Algorithms

Author:

Gan Xinbiao1ORCID,Li Tiejun1ORCID,Xiong Feng1ORCID,Yang Bo2ORCID,Chen Xinhai1ORCID,Gong Chunye1ORCID,Li Shijie1ORCID,Lu Kai1ORCID,Li Qiao3ORCID,Zhang Yiming3ORCID

Affiliation:

1. National University of Defense Technology, Changsha, China

2. School of Computer, National University of Defense Technology, Changsha, China

3. Xiamen University, Xiamen, China

Abstract

This paper presents MST, a communication-efficient message library for fast graph traversal on exascale clusters. The key idea is to follow the multi-level network topology to perform topology-aware message aggregation, where small messages are gathered and scattered at each level of domain. To facilitate message aggregation, we equip MST with flexible buffer management including active buffer switching and dynamic buffer expansion. We implement MST on the newest-generation Tianhe supercomputer and evaluated its performance using various traversal-centric algorithms on both synthetic trillion-scale graphs and real-world big graphs. The results show that MST-based graph traversal is orders of magnitude faster than that based on Active Messages Library (AML). For the Graph500-BFS benchmark, MST-based Tianhe (with 77.2K nodes) outperforms the Fugaku supercomputer (with 148.5K nodes) by 18.53%, while Fugaku is ranked No. 1 in the latest Graph500-BFS ranking (June 2023). MST also greatly improves graph processing performance on other commercial large-scale computing systems at the National Supercomputing Center in Changsha (NSCC) and WuzhenLight.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. 2022. National supercomputing Center in Changsha. http://nscc.hnu.edu.cn/info/1013/1011.htm.

2. 2023. https://en.wikipedia.org/wiki/Message_Passing_Interface. (2023).

3. 2023. https://en.wikipedia.org/wiki/SPMD. (2023).

4. 2023. https://github.com/anonymous-nicer/mst/blob/main/graph100.png. (2023).

5. 2023. https://github.com/graph500/graph500/tree/newreference/aml. (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3