Ghost: A General Framework for High-Performance Online Similarity Queries over Distributed Trajectory Streams

Author:

Fang Ziquan1ORCID,Gong Shenghao1ORCID,Chen Lu1ORCID,Xu Jiachen1ORCID,Gao Yunjun1ORCID,Jensen Christian S.2ORCID

Affiliation:

1. Zhejiang University, Hangzhou, China

2. Aalborg University, Aalborg, Denmark

Abstract

Trajectory similarity queries, including similarity search and similarity join, offer a foundation for many geo-spatial applications. With the rapid increase of streaming trajectory data volumes, e.g., data from mobile phones, vessel monitoring, or traffic systems, many location-based services benefit from online similarity analytics over trajectory data streams, where moving objects continually emit real-time position data. However, most existing studies focus on offline settings, and thus several major challenges remain unanswered in an online setting. To this end, we describe Ghost, a distributed stream processing framework that enables generic, efficient, and scalable online trajectory similarity search and join. We propose a novel incremental online similarity computation (IOSC) mechanism to accelerate pair-wise streaming trajectory distance calculation, which supports a broad range of trajectory distance metrics. Compared with previous studies, IOSC reduces the complexity from quadratic to linear in terms of trajectory length. Building on this foundation, we propose histogram-based algorithms that exploit histogram indexes and a series of pruning bounds to enable streaming trajectory similarity search and join. Finally, we extend our methods to the distributed platform Flink for scalability, where a CostPartitioner is developed to ensure parallel processing and workload balancing. An experimental study using two real-life and one synthetic datasets shows that Ghost (i) acquires 6-20× efficiency/throughput gains and one order of magnitude memory overhead savings over state-of-the-art baselines, (ii) achieves 3--8× workload balancing gains on Flink, and (iii) exhibits low parameter sensitivity and high robustness.

Publisher

Association for Computing Machinery (ACM)

Reference50 articles.

1. 2005. Brinkhoff. https://iapg.jade-hs.de/personen/brinkhoff/generator/. 2005. Brinkhoff. https://iapg.jade-hs.de/personen/brinkhoff/generator/.

2. 2014. Apache Flink. http://flink.apache.org/. 2014. Apache Flink. http://flink.apache.org/.

3. 2014. Apache Spark. http://spark.apache.org/. 2014. Apache Spark. http://spark.apache.org/.

4. 2014. Apache Storm. http://storm.apache.org/. 2014. Apache Storm. http://storm.apache.org/.

5. 2015. T-drive Project. http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html. 2015. T-drive Project. http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3