Stream-aware indexing for distributed inequality join processing
-
Published:2024-11
Issue:
Volume:125
Page:102425
-
ISSN:0306-4379
-
Container-title:Information Systems
-
language:en
-
Short-container-title:Information Systems
Author:
Aslam AdeelORCID, Simonini Giovanni, Gagliardelli Luca, Zecchini Luca, Bergamaschi Sonia
Reference54 articles.
1. A. Shahvarani, H.-A. Jacobsen, Distributed stream KNN join, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2021, pp. 1597–1609. 2. A. Michalke, P.M. Grulich, C. Lutz, S. Zeuch, V. Markl, An energy-efficient stream join for the internet of things, in: Proceedings of the 2021 ACM DAMON International Workshop on Data Management on New Hardware, 2021, pp. 1–6. 3. A. Shahvarani, H.-A. Jacobsen, Parallel index-based stream join on a multicore cpu, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020, pp. 2523–2537. 4. Runtime adaptation of data stream processing systems: The state of the art;Cardellini;ACM Comput. Surv.,2022 5. S. Frischbier, J. Tahir, C. Doblander, A. Hormann, R. Mayer, H.-A. Jacobsen, Detecting trading trends in financial tick data: The DEBS 2022 grand challenge, in: Proceedings of the ACM DEBS International Conference on Distributed and Event-Based Systems, 2022, pp. 132–138.
|
|