Set operations on polyhedra using binary space partitioning trees

Author:

Thibault William C.1,Naylor Bruce F.2

Affiliation:

1. Georgia Institute of Technology, Atlanta

2. AT&T Bell Laboratories, Murray Hill, NJ

Abstract

We introduce a new representation for polyhedra by showing how Binary Space Partitioning Trees (BSP trees) can be used to represent regular sets. We then show how they may be used in evaluating set operations on polyhedra. The BSP tree is a binary tree representing a recursive partitioning of d-space by (sub-)hyperplanes, for any dimension d. Their previous application to computer graphics has been to organize an arbitrary set of polygons so that a fast solution to the visible surface problem could be obtained. We retain this property (in 3D) and show how BSP trees can also provide an exact representation of arbitrary polyhedra of any dimension. Conversion from a boundary representation (B-reps) of polyhedra to a BSP tree representation is described. This technique leads to a new method for evaluating arbitrary set theoretic (boolean) expressions on B-reps, represented as a CSG tree, producing a BSP tree as the result. Results from our language-driven implmentation of this CSG evaluator are discussed. Finally, we show how to modify a BSP tree to represent the result of a set operation between the BSP tree and a B-rep. We describe the embodiment of this approach in an interactive 3D object design program that allows incremental modification of an object with a tool. Placement of the tool, selection of views, and performance of the set operation are all performed at interactive speeds for modestly complex objects.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3