Serving at the Edge: An Edge Computing Service Architecture Based on ICN

Author:

Fan Zhenyu1,Yang Wang1,Wu Fan2,Cao Jing1,Shi Weisong3

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha, China

2. Department of Computer Science and Technology, Tsinghua University, Beijing, China

3. Department of Computer Science, Wayne State University, Detroit, MI, USA

Abstract

Different from cloud computing, edge computing moves computing away from the centralized data center and closer to the end-user. Therefore, with the large-scale deployment of edge services, it becomes a new challenge of how to dynamically select the appropriate edge server for computing requesters based on the edge server and network status. In the TCP/IP architecture, edge computing applications rely on centralized proxy servers to select an appropriate edge server, which leads to additional network overhead and increases service response latency. Due to its powerful forwarding plane, Information-Centric Networking (ICN) has the potential to provide more efficient networking support for edge computing than TCP/IP. However, traditional ICN only addresses named data and cannot well support the handle of dynamic content. In this article, we propose an edge computing service architecture based on ICN, which contains the edge computing service session model, service request forwarding strategies, and service dynamic deployment mechanism. The proposed service session model can not only keep the overhead low but also push the results to the computing requester immediately once the computing is completed. However, the service request forwarding strategies can forward computing requests to an appropriate edge server in a distributed manner. Compared with the TCP/IP-based proxy solution, our forwarding strategy can avoid unnecessary network transmissions, thereby reducing the service completion time. Moreover, the service dynamic deployment mechanism decides whether to deploy an edge service on an edge server based on service popularity, so that edge services can be dynamically deployed to hotspot, further reducing the service completion time.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3