H3D-Transformer: A Heterogeneous 3D (H3D) Computing Platform for Transformer Model Acceleration on Edge Devices

Author:

Luo Yandong1ORCID,Yu Shimeng1ORCID

Affiliation:

1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, United States

Abstract

Prior hardware accelerator designs primarily focused on single-chip solutions for 10 MB-class computer vision models. The GB-class transformer models for natural language processing (NLP) impose challenges on existing accelerator design due to the massive number of parameters and the diverse matrix multiplication (MatMul) workloads involved. This work proposes a heterogeneous 3D-based accelerator design for transformer models, which adopts an interposer substrate with multiple 3D memory/logic hybrid cubes optimized for accelerating different MatMul workloads. An approximate computing scheme is proposed to take advantage of heterogeneous computing paradigms of mixed-signal compute-in-memory (CIM) and digital tensor processing units (TPU). From the system-level evaluation results, 10 TOPS/W energy efficiency is achieved for the BERT and GPT2 model, which is about 2.6× ∼ 3.1× higher than the baseline with 7 nm TPU and stacked FeFET memory.

Funder

CHIMES

SRC/DARPA JUMP 2.0 centers

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. O. Rybakov N. Kononenko N. Subrahmanya M. Visontai and S. Laurenzo. 2020. Streaming keyword spotting on mobile devices. arXiv: 2005.06720 (2020).

2. Y. Wu M. Schuster Z. Chen Q. V. Le M. Norouzi W. Macherey M. Krikun Y. Cao Q. Gao K. Macherey J. Klingner A. Shah M. Johnson X. Liu Ł. Kaiser S. Gouws Y. Kato T. Kudo H. Kazawa K. Stevens G. Kurian N. Patil W. Wang C. Young J. Smith J. Riesa A. Rudnick O. Vinyals G. Corrado M. Hughes and J. Dean. 2016. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144 (2016).

3. OpenAI. 2022. “Introducing ChatGPT.” Retrieved from https://openai.com/blog/chatgpt

4. A 4nm 6163-TOPS/W/b $\mathbf{4790-TOPS/mm^{2}/b}$ SRAM Based Digital-Computing-in-Memory Macro Supporting Bit-Width Flexibility and Simultaneous MAC and Weight Update

5. O. Golonzka, J.-G. Alzate, U. Arslan, M. Bohr, P. Bai, J. Brockman, B. Buford, C. Connor, N. Das, B. Doyle, T. Ghani, F. Hamzaoglu, P. Heil, P. Hentges, R. Jahan, D. Kencke, B. Lin, M. Lu, M. Mainuddin, M. Meterelliyoz, P. Nguyen, D. Nikonov, K. O'brien, J. ODonnell, K. Oguz, D. Ouellette, J. Park, J. Pellegren, C. Puls, P. Quintero, T. Rahman, A. Romang, M. Sekhar, A. Selarka, M. Seth, A. J. Smith, A. K. Smith, L. Wei, C. Wiegand, Z. Zhang, and K. Fischer. 2018. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. In IEEE International Electron Devices Meeting (IEDM’18). 18.1.1–18.1.4.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HeTraX: Energy Efficient 3D Heterogeneous Manycore Architecture for Transformer Acceleration;Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design;2024-08-05

2. Accelerator Design using 3D Stacked Capacitorless DRAM for Large Language Models;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3