Robust Cross-lingual Task-oriented Dialogue

Author:

Xiang Lu1,Zhu Junnan1,Zhao Yang1,Zhou Yu2,Zong Chengqing1

Affiliation:

1. National Laboratory of Pattern Recognition, Institute of Automation, CAS, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

2. National Laboratory of Pattern Recognition, Institute of Automation, CAS, School of Artificial Intelligence, University of Chinese Academy of Sciences, Fanyu AI Research, Beijing Fanyu Technology Co., Ltd, Beijing, China

Abstract

Cross-lingual dialogue systems are increasingly important in e-commerce and customer service due to the rapid progress of globalization. In real-world system deployment, machine translation (MT) services are often used before and after the dialogue system to bridge different languages. However, noises and errors introduced in the MT process will result in the dialogue system's low robustness, making the system's performance far from satisfactory. In this article, we propose a novel MT-oriented noise enhanced framework that exploits multi-granularity MT noises and injects such noises into the dialogue system to improve the dialogue system's robustness. Specifically, we first design a method to automatically construct multi-granularity MT-oriented noises and multi-granularity adversarial examples, which contain abundant noise knowledge oriented to MT. Then, we propose two strategies to incorporate the noise knowledge: (i) Utterance-level adversarial learning and (ii) Knowledge-level guided method. The former adopts adversarial learning to learn a perturbation-invariant encoder, guiding the dialogue system to learn noise-independent hidden representations. The latter explicitly incorporates the multi-granularity noises, which contain the noise tokens and their possible correct forms, into the training and inference process, thus improving the dialogue system's robustness. Experimental results on three dialogue models, two dialogue datasets, and two language pairs have shown that the proposed framework significantly improves the performance of the cross-lingual dialogue system.

Funder

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixture-of-languages Routing for Multilingual Dialogues;ACM Transactions on Information Systems;2024-08-05

2. Contrastive Adversarial Training for Multi-Modal Machine Translation;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-06-16

3. Open-Domain Response Generation in Low-Resource Settings using Self-Supervised Pre-Training of Warm-Started Transformers;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-03-25

4. Combining BERT Model with Semi-Supervised Incremental Learning for Heterogeneous Knowledge Fusion of High-Speed Railway On-Board System;Computational Intelligence and Neuroscience;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3