Semantic Template-based Convolutional Neural Network for Text Classification

Author:

Chang Yung-Chun1ORCID,Ng Siu Hin2ORCID,Chen Jung-Peng3ORCID,Liang Yu-Chi4ORCID,Hsu Wen-Lian5ORCID

Affiliation:

1. Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan and Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan

2. SNHCC, TIGP, Academia Sinica, and National Cheng Chi University, Taipei, Taiwan

3. Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan

4. Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan

5. Department of Computer Science and Information Engineering, College of Information and Electrical Engineering, Asia University, Taichung, Taiwan and Pervasive AI Research Labs, Ministry of Science and Technology, Hsinchu City, Taiwan

Abstract

We propose a semantic template-based distributed representation for the convolutional neural network called Semantic Template-based Convolutional Neural Network (STCNN) for text categorization that imitates the perceptual behavior of human comprehension. STCNN is a highly automatic approach that learns semantic templates that characterize a domain from raw text and recognizes categories of documents using a semantic-infused convolutional neural network that allows a template to be partially matched through a statistical scoring system. Our experiment results show that STCNN effectively classifies documents in about 140,000 Chinese news articles into predefined categories by capturing the most prominent and expressive patterns and achieves the best performance among all compared methods for Chinese topic classification. Finally, the same knowledge can be directly used to perform a semantic analysis task.

Funder

National Science and Technology Council

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference76 articles.

1. D. D. Lewis and M. Ringuette. 1994. A comparison of two learning algorithms for text categorization. In Proceedings of the 3rd Annual Symposium on Document Analysis and Information Retrieval. 81–93.

2. Knowledge-Based systems survey;Ahmed A.;Int. J. Acad. Eng. Res.,2019

3. Diversity of rule-based approaches: Classic systems and recent applications;Nalepa G. J.;Avant: Trends Interdisc. Studies,2016

4. N. O. Finnemann. 2000. Rule-based and rule-generating systems. In: P. B. Andersen, Claus Emmeche, N. O. Finnemann, and P. V. Christiansen (Eds.). Downward Causation. University of Aarhus Press, Aarhus, Denmark, 278–301.

5. On the Incoherence Objection to Rule-Utilitarianism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3