Affiliation:
1. Peking University, Beijing, China
Abstract
Content-based copy detection (CBCD) is drawing increasing attention as an alternative technology to watermarking for video identification and copyright protection. In this article, we present a comprehensive method to detect copies that are subjected to complicated transformations. A multimodal feature representation scheme is designed to exploit the complementarity of audio features, global and local visual features so that optimal overall robustness to a wide range of complicated modifications can be achieved. Meanwhile, a temporal pyramid matching algorithm is proposed to assemble frame-level similarity search results into sequence-level matching results through similarity evaluation over multiple temporal granularities. Additionally, inverted indexing and locality sensitive hashing (LSH) are also adopted to speed up similarity search. Experimental results over benchmarking datasets of TRECVID 2010 and 2009 demonstrate that the proposed method outperforms other methods for most transformations in terms of copy detection accuracy. The evaluation results also suggest that our method can achieve competitive copy localization preciseness.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献