Detection of AI-Manipulated Fake Faces via Mining Generalized Features

Author:

Yu Yang1,Ni Rongrong1,Li Wenjie1,Zhao Yao1

Affiliation:

1. Institute of Information Science,Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing Jiaotong University, Haidian Qu, Beijing Shi, China

Abstract

Recently, AI-manipulated face techniques have developed rapidly and constantly, which has raised new security issues in society. Although existing detection methods consider different categories of fake faces, the performance on detecting the fake faces with “unseen” manipulation techniques is still poor due to the distribution bias among cross-manipulation techniques. To solve this problem, we propose a novel framework that focuses on mining intrinsic features and further eliminating the distribution bias to improve the generalization ability. First, we focus on mining the intrinsic clues in the channel difference image (CDI) and spectrum image (SI) view of two different aspects, including the camera imaging process and the indispensable step in AI manipulation process. Then, we introduce the Octave Convolution and an attention-based fusion module to effectively and adaptively mine intrinsic features from CDI and SI view of these two different but intrinsic aspects. Finally, we design an alignment module to eliminate the bias of manipulation techniques to obtain a more generalized detection framework. We evaluate the proposed framework on four categories of fake faces datasets with the most popular and state-of-the-art manipulation techniques and achieve very competitive performances. We further conduct experiments on cross-manipulation techniques, and the results of our method show the superior advantages on improving generalization ability.

Funder

National Key Research and Development Program of China

National Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combating deepfakes: a comprehensive multilayer deepfake video detection framework;Multimedia Tools and Applications;2024-08-20

2. Multi-Modal Driven Pose-Controllable Talking Head Generation;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-08-10

3. FLAG: frequency-based local and global network for face forgery detection;Multimedia Tools and Applications;2024-03-28

4. PADVG: A Simple Baseline of Active Protection for Audio-Driven Video Generation;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-03-08

5. Transferability of CNN models for GAN-generated face detection;Multimedia Tools and Applications;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3