Computable Bounds in Fork-Join Queueing Systems

Author:

Rizk Amr1,Poloczek Felix2,Ciucu Florin1

Affiliation:

1. University of Warwick, Coventry, United Kingdom

2. University of Warwick / TU Berlin, Coventry, United Kingdom

Abstract

In a Fork-Join (FJ) queueing system an upstream fork station splits incoming jobs into N tasks to be further processed by N parallel servers, each with its own queue; the response time of one job is determined, at a downstream join station, by the maximum of the corresponding tasks' response times. This queueing system is useful to the modelling of multi-service systems subject to synchronization constraints, such as MapReduce clusters or multipath routing. Despite their apparent simplicity, FJ systems are hard to analyze. This paper provides the first computable stochastic bounds on the waiting and response time distributions in FJ systems. We consider four practical scenarios by combining 1a) renewal and 1b) non-renewal arrivals, and 2a) non-blocking and 2b) blocking servers. In the case of non blocking servers we prove that delays scale as O(logN), a law which is known for first moments under renewal input only. In the case of blocking servers, we prove that the same factor of log N dictates the stability region of the system. Simulation results indicate that our bounds are tight, especially at high utilizations, in all four scenarios. A remarkable insight gained from our results is that, at moderate to high utilizations, multipath routing 'makes sense' from a queueing perspective for two paths only, i.e., response times drop the most when N = 2; the technical explanation is that the resequencing (delay) price starts to quickly dominate the tempting gain due to multipath transmissions.

Funder

DFG

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear approximation of characteristics of a fork–join queueing system with Pareto service as a model of parallel structure of data processing;Mathematics and Computers in Simulation;2023-12

2. ReactiveFnJ: A choreographed model for Fork-Join Workflow in Serverless Computing;Journal of Cloud Computing;2023-04-24

3. State-Dependent Estimation of Delay Distributions in Fork-Join Networks;Manufacturing & Service Operations Management;2022-12-19

4. Analysis of a Queueing Model for Energy Storage Systems with Self-discharge;ACM Transactions on Modeling and Performance Evaluation of Computing Systems;2020-09-30

5. Speed scaling in fork-join queues;Proceedings of the 13th EAI International Conference on Performance Evaluation Methodologies and Tools;2020-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3