ReactiveFnJ: A choreographed model for Fork-Join Workflow in Serverless Computing

Author:

Bharti UrmilORCID,Goel Anita,Gupta S. C.

Abstract

AbstractFunction-as-a-Service (FaaS) is an event-based reactive programming model where functions run in ephemeral stateless containers for short duration. For building complex serverless applications, function composition is crucial to coordinate and synchronize the workflow of an application. Some serverless orchestration systems exist, but they are in their primitive state and do not provide inherent support for non-trivial workflows like, Fork-Join. To address this gap, we propose a fully serverless and scalable design model ReactiveFnJ for Fork-Join workflow. The intent of this work is to illustrate a design which is completely choreographed, reactive, asynchronous, and represents a dynamic composition model for serverless applications based on Fork-Join workflow. Our design uses two innovative patterns, namely, Relay Composition and Master-Worker Composition to solve execution time-out challenges. As a Proof-of-Concept (PoC), the prototypical implementation of Split-Sort-Merge use case, based on Fork-Join workflow is discussed and evaluated. The ReactiveFnJ handles embarrassingly parallel computations, and its design does not depend on any external orchestration services, messaging services, and queue services. ReactiveFnJ facilitates in designing fully automated pipelines for distributed data processing systems, satisfying the Serverless Trilemma in true essence. A file of any size can be processed using our effective and extensible design without facing execution time-out challenges. The proposed model is generic and can be applied to a wide range of serverless applications that are based on the Fork-Join workflow pattern. It fosters the choreographed serverless composition for complex workflows. The proposed design model is useful for software engineers and developers in industry and commercial organizations, total solution vendors and academic researchers.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3