The next 700 relational program logics

Author:

Maillard Kenji1,Hriţcu Cătălin2,Rivas Exequiel2,Van Muylder Antoine3

Affiliation:

1. Inria, France / ENS, France

2. Inria, France

3. Inria, France / University of Paris, France

Abstract

We propose the first framework for defining relational program logics for arbitrary monadic effects. The framework is embedded within a relational dependent type theory and is highly expressive. At the semantic level, we provide an algebraic presentation of relational specifications as a class of relative monads, and link computations and specifications by introducing relational effect observations, which map pairs of monadic computations to relational specifications in a way that respects the algebraic structure. For an arbitrary relational effect observation, we generically define the core of a sound relational program logic, and explain how to complete it to a full-fledged logic for the monadic effect at hand. We show that this generic framework can be used to define relational program logics for effects as diverse as state, input-output, nondeterminism, and discrete probabilities. We, moreover, show that by instantiating our framework with state and unbounded iteration we can embed a variant of Benton's Relational Hoare Logic, and also sketch how to reconstruct Relational Hoare Type Theory. Finally, we identify and overcome conceptual challenges that prevented previous relational program logics from properly dealing with control effects, and are the first to provide a relational program logic for exceptions.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties;Proceedings of the ACM on Programming Languages;2024-06-20

2. Securing Verified IO Programs Against Unverified Code in F*;Proceedings of the ACM on Programming Languages;2024-01-05

3. A Denotational Approach to Release/Acquire Concurrency;Lecture Notes in Computer Science;2024

4. Operationally-based program equivalence proofs using LCTRSs;Journal of Logical and Algebraic Methods in Programming;2023-10

5. SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq;ACM Transactions on Programming Languages and Systems;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3