Making content caching policies 'smart' using the deepcache framework

Author:

Narayanan Arvind1,Verma Saurabh1,Ramadan Eman1,Babaie Pariya1,Zhang Zhi-Li1

Affiliation:

1. University of Minnesota

Abstract

In this paper, we present Deepcache a novel Framework for content caching, which can significantly boost cache performance. Our Framework is based on powerful deep recurrent neural network models. It comprises of two main components: i) Object Characteristics Predictor, which builds upon deep LSTM Encoder-Decoder model to predict the future characteristics of an object (such as object popularity) - to the best of our knowledge, we are the first to propose LSTM Encoder-Decoder model for content caching; ii) a caching policy component, which accounts for predicted information of objects to make smart caching decisions. In our thorough experiments, we show that applying Deepcache Framework to existing cache policies, such as LRU and k-LRU, significantly boosts the number of cache hits.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference20 articles.

1. Cisco visual networking index: Forecast and methodology 2016--2021 2017. Cisco visual networking index: Forecast and methodology 2016--2021 2017.

2. Bahdanau D. Cho K. and Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014). Bahdanau D. Cho K. and Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

3. Adaptive TTL-Based Caching for Content Delivery

4. Analysis and design of hierarchical Web caching systems

5. Chung J. Gulcehre C. Cho K. and Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014). Chung J. Gulcehre C. Cho K. and Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3