Reasoning on divergent computations with coaxioms

Author:

Ancona Davide1,Dagnino Francesco1,Zucca Elena1

Affiliation:

1. University of Genoa, Italy

Abstract

Coaxioms have been recently introduced to enhance the expressive power of inference systems, by supporting interpretations which are neither purely inductive, nor coinductive. This paper proposes a novel approach based on coaxioms to capture divergence in semantic definitions by allowing inductive and coinductive semantic rules to be merged together for defining a unique semantic judgment. In particular, coinduction is used to derive a special result which models divergence. In this way, divergent, terminating, and stuck computations can be properly distinguished even in semantic definitions where this is typically difficult, as in big-step style. We show how the proposed approach can be applied to several languages; in particular, we first illustrate it on the paradigmatic example of the λ-calculus, then show how it can be adopted for defining the big-step semantics of a simple imperative Java-like language. We provide proof techniques to show classical results, including equivalence with small-step semantics, and type soundness for typed versions of both languages.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The eXchange Calculus (XC): A functional programming language design for distributed collective systems;Journal of Systems and Software;2024-04

2. Resource-Aware Soundness for Big-Step Semantics;Proceedings of the ACM on Programming Languages;2023-10-16

3. Checked corecursive streams: Expressivity and completeness;Theoretical Computer Science;2023-09

4. A Meta-theory for Big-step Semantics;ACM Transactions on Computational Logic;2022-04-06

5. Soundness Conditions for Big-Step Semantics;Programming Languages and Systems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3