A Meta-theory for Big-step Semantics

Author:

Dagnino Francesco1ORCID

Affiliation:

1. Università di Genova, Genova, Italy

Abstract

It is well known that big-step semantics is not able to distinguish stuck and non-terminating computations. This is a strong limitation as it makes it very difficult to reason about properties involving infinite computations, such as type soundness, which cannot even be expressed. We show that this issue is only apparent: the distinction between stuck and diverging computations is implicit in any big-step semantics and it just needs to be uncovered. To achieve this goal, we develop a systematic study of big-step semantics: we introduce an abstract definition of what a big-step semantics is, we define a notion of computation by formalizing the evaluation algorithm implicitly associated with any big-step semantics, and we show how to canonically extend a big-step semantics to characterize stuck and diverging computations. Building on these notions, we describe a general proof technique to show that a predicate is sound, that is, it prevents stuck computation, with respect to a big-step semantics. One needs to check three properties relating the predicate and the semantics, and if they hold, the predicate is sound. The extended semantics is essential to establish this meta-logical result but is of no concerns to the user, who only needs to prove the three properties of the initial big-step semantics. Finally, we illustrate the technique by several examples, showing that it is applicable also in cases where subject reduction does not hold, and hence the standard technique for small-step semantics cannot be used.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The eXchange Calculus (XC): A functional programming language design for distributed collective systems;Journal of Systems and Software;2024-04

2. A Small-Step Semantics for Janus;Lecture Notes in Computer Science;2024

3. Resource-Aware Soundness for Big-Step Semantics;Proceedings of the ACM on Programming Languages;2023-10-16

4. Verifying C++ Dynamic Binding;Proceedings of the 25th ACM International Workshop on Formal Techniques for Java-like Programs;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3