Affiliation:
1. McGill University, Canada
Abstract
Given its societal impacts and applications to numerous fields, machine learning (ML) is an important topic to understand for many students outside of computer science and statistics. However, machine-learning education research is nascent, and research on this subject for non-majors thus far has only focused on curricula and courseware. We interviewed 10 instructors of ML courses for non-majors, inquiring as to what their students find both easy and difficult about machine learning. While ML has a reputation for having algorithms that are difficult to understand, in practice our participating instructors reported that it was not the algorithms that were difficult to teach, but the higher-level design decisions. We found that the learning goals that participants described as hard to teach were consistent with higher levels of the Structure of Observed Learning Outcomes (SOLO) taxonomy, such as making design decisions and comparing/contrasting models. We also found that the learning goals that were described as easy to teach, such as following the steps of particular algorithms, were consistent with the lower levels of the SOLO taxonomy. Realizing that higher-SOLO learning goals are more difficult to teach is useful for informing course design, public outreach, and the design of educational tools for teaching ML.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Association for Computing Machinery (ACM)
Subject
Education,General Computer Science
Reference35 articles.
1. A comparison of primary mathematics curriculum in England and Qatar: The SOLO taxonomy;Alsaadi Aziza;Res. Learn. Math.,2001
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献